No Silver Bullet: Technical barriers to the use of qPCR for the enumeration of microbial contaminants in Cannabis

(Supplementary Materials)

Materials and Methods

Enumeration and DNA extraction from pure culture

For each bacteria and yeast (Table S3), triplicate cultures were grown overnight in tryptic soy broth (TSB) or yeast peptone dextrose broth (YPD), respectively. Spore suspensions of mold cultures (Table S3) were prepared in triplicate as described elsewhere¹. Before use, bacterial and fungal cultures were standardized to approximately 10⁸ and 10⁶ CFU/ml, respectively. These standardized cultures were enumerated by spread plate on tryptic soy agar (TSA) and Sabouraud dextrose agar (SDA) respectively for bacteria and fungi. Microscope counts of cultures were used to confirm the absence of an overabundance dead cells which could affect the correlation between plate count and qPCR enumeration. Each standardized culture was decimally diluted in phosphate buffered saline (PBS) up to seven times, and total DNA was extracted from selected dilutions using the MagMAXTM Microbiome Ultra Nucleic Acid Isolation Kit from Applied Biosystems, following the manufacturer's directions.

Enumeration and DNA extraction from cannabis matrix

Triplicate one-gram sub-samples from each flower sample were homogenized in 9 ml of TSB. Each sub-sample was enumerated by standard spread plating (USP general chapter <61>). In parallel, DNA was extracted from each sub-sample using both the MagMAX[™] Microbiome

¹ Ricardo Araujo, Acacio G. Rodrigues, and Cidalia Pina-Vaz, "A Fast, Practical and Reproducible Procedure for the Standardization of the Cell Density of an Aspergillus Suspension," *Journal of Medical Microbiology* 53, no. 8 (2004): 783–86, https://doi.org/10.1099/jmm.0.05425-0.

Ultra Nucleic Acid Isolation Kit (Applied Biosystems) and the DNA extraction kit provided by the manufacturer of the commercial qPCR assays assessed in this study. Both kits were used according to the manufacturers' directions.

Amplification with qPCR

All qPCR reactions were performed on an Applied Biosystems Quant-Studio 6 Pro qPCR instrument. For non-commercial assays (Tables S1 & S2), reaction mixtures were prepared using the PowerUpTM SYBRTM Green Master Mix, 500 nM of each primer, and 5 µl of DNA template. Commercial assay reactions were prepared following the manufacturer's directions. Amplification was conducted following the manufacturers' temperature protocols for the respective kit or master mix. Melt curves were prepared for each SYBRTM Green assay to confirm the absence of off-target amplification. For pure culture and negative control assays, qPCR reactions were prepared with DNA extracted using the MAGMAXTM kit. For the cannabis matrix assays, non-commercial assays (Tables S1 & S2) were conducted using DNA extracted with the MAGMAXTM kit, while the commercial assays were conducted using DNA extracted using the DNA extraction kit provided by the assay manufacturer.

Data Analysis

Raw qPCR data was collected using the Design & Analysis Software (v2.4; Applied Biosystems). Collected data was analyzed using R software (v3.6.3; R Foundation for Statistical Computing, [https://www.R-project.org/].

Supplementary Tables

Assay	Target	Length (bp)	Primer	Sequence (5' – 3') ^a	Reference
V4	16S	275	V4_F	GTGCCAGCMGCCGCGGTAA	2
	rRNA	215	V4_R	GGACTACNVGGGTWTCTAAT	
V3V4	16S	466	V3V4_F	TCCTACGGGAGGCAGCAGT	3
	rRNA		V3V4_R	GGACTACCAGGGTATCTAATCCTGTT	
rpoB	rpoB	430	rpoB_F	GGYTWYGAAGTNCGHGACGTDCA	4
			rpoB_R	TGACGYTGCATGTTBGMRCCCATMA	
gyrB	gyrB	200	gyrB_F	MGNCCNGSNATGTAYATHGG	5
		280	gyrB_R	CNCCRTGNARDCCDCCNGA	Ĵ,

 Table S1. Primer details for each total aerobic microbial count assay

^aDegenerate bases are highlighted in bold

² J. Gregory Caporaso et al., "Global Patterns of 16S RRNA Diversity at a Depth of Millions of Sequences per Sample," *Proceedings of the National Academy of Sciences of the United States of America* 108, no. SUPPL. 1 (2011): 4516–22, https://doi.org/10.1073/pnas.1000080107.

³ Mangala A. Nadkarni et al., "Determination of Bacterial Load by Real-Time PCR Using a Broad-Range (Universal) Probe and Primers Set," *Microbiology* 148, no. 1 (2002): 257–66, https://doi.org/10.1099/00221287-148-1-257.

⁴ Jean Claude Ogier et al., "RpoB, a Promising Marker for Analyzing the Diversity of Bacterial Communities by Amplicon Sequencing," *BMC Microbiology* 19, no. 1 (2019): 1–16, https://doi.org/10.1186/s12866-019-1546-z.

⁵ Simon Poirier et al., "Deciphering Intra-Species Bacterial Diversity of Meat and Seafood Spoilage Microbiota Using GyrB Amplicon Sequencing: A Comparative Analysis with 16S RDNA V3-V4 Amplicon Sequencing," *PLoS ONE* 13, no. 9 (2018): 1–26, https://doi.org/10.1371/journal.pone.0204629.

Assay	Target	Length	Primer	Sequence (5' – 3') ^a	Reference
		(bp)			
ITS1	ITS ^b	200-	ITS1_F	TCCGTAGGTGAACCTGCGG	б
		250	ITS1_R	GCTGCGTTCTTCATCGATGC	Ť
ITS2	ITS	450-	ITS2_F	ATCGATGAAGAACGCAG	7
		550	ITS2_R	GGATTCTCACCCTCTATGAC	
TEF1α	teflA	600	TEF_F	GAYTTCATCAAGAACATGAT	8
			TEF_R	GACGTTGAA D CC R AC R TTGTC	-
LNS2	LNS2	400	LNS_F	GGCCATGTGCTGAACATGATCGGHCGWGAYTGGAC	9
			LNS_R	CGGTTGCC R AA K CC R GCATAGAA K GG	,

Table S2. Primer details for each total yeast and mold count assay

^aDegenerate bases are highlighted in bold

^bInternal transcribed spacer

⁶ Nicholas A. Bokulich and David A. Mills, "Improved Selection of Internal Transcribed Spacer-Specific Primers Enables Quantitative, Ultra-High-Throughput Profiling of Fungal Communities," *Applied and Environmental Microbiology* 79, no. 8 (2013): 2519–26, https://doi.org/10.1128/AEM.03870-12.

⁷ Bokulich and Mills.

⁸ J. B. Stielow et al., "One Fungus, Which Genes? Development and Assessment of Universal Primers for Potential Secondary Fungal DNA Barcodes," *Persoonia: Molecular Phylogeny and Evolution of Fungi* 35, no. 1 (2015): 242–63, https://doi.org/10.3767/003158515X689135.

⁹ Stielow et al.

Table S3. Microorganisms used in this study

Species	Strain	Assay	Sub-group
Bacillus subtilis	NCTC 10400	TAC	Gram-positive
Staphylococcus aureus	NCTC 10788	TAC	Gram-positive
Pseudomonas aeruginosa	NCTC 12924	TAC	Gram-negative
Escherichia coli	NCTC 9001	TAC	Gram-negative
Aspergillus brasiliensis	NCPF 2275	TYM	Mold
Penicillium chrysogenum	ATCC 10002	TYM	Mold
Candida albicans	NCPF 3179	TYM	Yeast
Saccharomyces cerevisiae	CEN.PK2-1D	TYM	Yeast